Next: Functions and Variables for statistical graphs, Previous: Functions and Variables for data manipulation, Up: descriptive [Contents][Index]
これは標本平均です。以下のように定義されます。
                       n
                     ====
             _   1   \
             x = -    >    x
                 n   /      i
                     ====
                     i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean (s1);
                               471
(%o3)                          ---
                               100
(%i4) %, numer; (%o4) 4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) mean (s2); (%o6) [9.9485, 10.1607, 10.8685, 15.7166, 14.8441]
これは標本分散です。以下のように定義されます。
                     n
                   ====
           2   1   \          _ 2
          s  = -    >    (x - x)
               n   /       i
                   ====
                   i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var (s1), numer; (%o3) 8.425899999999999
関数var1も参照してください。
これは標本分散です。以下のように定義されます。
                     n
                   ====
               1   \          _ 2
              ---   >    (x - x)
              n-1  /       i
                   ====
                   i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var1 (s1), numer; (%o3) 8.5110101010101
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) var1 (s2);
(%o5) [17.39586540404041, 15.13912778787879, 15.63204924242424, 
                            32.50152569696971, 24.66977392929294]
関数varも参照してください。
これは分母nの分散である関数varの平方根です。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std (s1), numer; (%o3) 2.902740084816414
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std (s2);
(%o5) [4.149928523480858, 3.871399812729241, 3.933920277534866, 
                            5.672434260526957, 4.941970881136392]
関数varとstd1も参照してください。
これは分母n-1の分散である関数var1の平方根です。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std1 (s1), numer; (%o3) 2.917363553109228
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std1 (s2);
(%o5) [4.170835096721089, 3.89090320978032, 3.953738641137555, 
                            5.701010936401517, 4.966867617451963]
See also functions var1 and std.
次数kの非中心モーメントです。以下のように定義されます。
                       n
                     ====
                 1   \      k
                 -    >    x
                 n   /      i
                     ====
                     i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) noncentral_moment (s1, 1), numer; /* the mean */ (%o3) 4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) noncentral_moment (s2, 5);
(%o6) [319793.8724761505, 320532.1923892463,
      391249.5621381556, 2502278.205988911, 1691881.797742255]
関数central_momentも参照してください。
次数kの中心モーメントです。以下のように定義されます。
                    n
                  ====
              1   \          _ k
              -    >    (x - x)
              n   /       i
                  ====
                  i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) central_moment (s1, 2), numer; /* the variance */ (%o3) 8.425899999999999
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) central_moment (s2, 3);
(%o6) [11.29584771375004, 16.97988248298583, 5.626661952750102,
                             37.5986572057918, 25.85981904394192]
関数noncentral_momentとmeanも参照してください。
変動係数は標本標準偏差(std)を平均meanで割った商です。
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) cv (s1), numer; (%o3) .6193977819764815
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) cv (s2);
(%o5) [.4192426091090204, .3829365309260502, 0.363779605385983, 
                            .3627381836021478, .3346021393989506]
関数stdとmeanも参照してください。
これは標本listの最小値です。
引数が行列の時、
sminは
統計変数に関連付けられた列の最小値を含むリストを返します。
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smin (s1); (%o3) 0
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) smin (s2); (%o5) [0.58, 0.5, 2.67, 5.25, 5.17]
See also function smax.
これは標本listの最大値です。
引数が行列の時、
smaxは
統計変数に関連付けられた列の最大値を含むリストを返します。
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smax (s1); (%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) smax (s2); (%o5) [20.25, 21.46, 20.04, 29.63, 27.63]
関数sminも参照してください。
範囲は極値の差です。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) range (s1); (%o3) 9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) range (s2); (%o5) [19.67, 20.96, 17.37, 24.38, 22.46]
これは標本listのp分位数です。pは[0, 1]の範囲の数です。
標本分位数にはいくつかの定義がありますが
(Hyndman, R. J., Fan, Y. (1996) Sample quantiles in statistical packages. American Statistician, 50, 361-365)、
パッケージdescriptiveでは線形内挿に基づいたものが実装されています。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) /* 1st and 3rd quartiles */
         [quantile (s1, 1/4), quantile (s1, 3/4)], numer;
(%o3)                      [2.0, 7.25]
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quantile (s2, 1/4); (%o5) [7.2575, 7.477500000000001, 7.82, 11.28, 11.48]
一旦標本が順に並べられると、 もし標本サイズが奇数ならメジアンは中央値であり、 そうでなければ2つの中央値の平均です。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median (s1);
                                9
(%o3)                           -
                                2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median (s2); (%o5) [10.06, 9.855, 10.73, 15.48, 14.105]
メジアンは1/2分位数です。
関数quantileも参照してください。
四分位範囲は
三番目と一番目の分位数の差
quantile(list,3/4) - quantile(list,1/4)
です。
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) qrange (s1);
                               21
(%o3)                          --
                               4
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) qrange (s2);
(%o5) [5.385, 5.572499999999998, 6.022500000000001, 
                            8.729999999999999, 6.649999999999999]
関数quantileも参照してください。
平均偏差です。以下のように定義されます。
                     n
                   ====
               1   \          _
               -    >    |x - x|
               n   /       i
                   ====
                   i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean_deviation (s1);
                               51
(%o3)                          --
                               20
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) mean_deviation (s2);
(%o5) [3.287959999999999, 3.075342, 3.23907, 4.715664000000001, 
                                               4.028546000000002]
関数meanも参照してください。
メジアン偏差です。以下のように定義されます。
                 n
               ====
           1   \
           -    >    |x - med|
           n   /       i
               ====
               i = 1
ここでmedはlistのメジアンです。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median_deviation (s1);
                                5
(%o3)                           -
                                2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median_deviation (s2); (%o5) [2.75, 2.755, 3.08, 4.315, 3.31]
関数meanも参照してください。
調和平均です。以下のように定義されます。
                  n
               --------
                n
               ====
               \     1
                >    --
               /     x
               ====   i
               i = 1
例:
(%i1) load ("descriptive")$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) harmonic_mean (y), numer; (%o3) 3.901858027632205
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) harmonic_mean (s2);
(%o5) [6.948015590052786, 7.391967752360356, 9.055658197151745, 
                            13.44199028193692, 13.01439145898509]
関数meanとgeometric_meanも参照してください。
幾何平均です。以下のように定義されます。
                 /  n      \ 1/n
                 | /===\   |
                 |  ! !    |
                 |  ! !  x |
                 |  ! !   i|
                 | i = 1   |
                 \         /
例:
(%i1) load ("descriptive")$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) geometric_mean (y), numer; (%o3) 4.454845412337012
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) geometric_mean (s2);
(%o5) [8.82476274347979, 9.22652604739361, 10.0442675714889, 
                            14.61274126349021, 13.96184163444275]
関数meanとharmonic_meanも参照してください。
尖度係数です。以下のように定義されます。
                    n
                  ====
            1     \          _ 4
           ----    >    (x - x)  - 3
              4   /       i
           n s    ====
                  i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) kurtosis (s1), numer; (%o3) - 1.273247946514421
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) kurtosis (s2);
(%o5) [- .2715445622195385, 0.119998784429451, 
     - .4275233490482861, - .6405361979019522, - .4952382132352935]
関数mean, var, skewnessも参照してください。
歪度係数です。以下のように定義されます。
                    n
                  ====
            1     \          _ 3
           ----    >    (x - x)
              3   /       i
           n s    ====
                  i = 1
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) skewness (s1), numer; (%o3) .009196180476450424
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) skewness (s2);
(%o5) [.1580509020000978, .2926379232061854, .09242174416107717, 
                            .2059984348148687, .2142520248890831]
関数mean, var, kurtosisも参照してください。
Pearsonの歪度係数です。以下のように定義されます。
                _
             3 (x - med)
             -----------
                  s
ここで medはlistのメジアンです。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) pearson_skewness (s1), numer; (%o3) .2159484029093895
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) pearson_skewness (s2);
(%o5) [- .08019976629211892, .2357036272952649, 
         .1050904062491204, .1245042340592368, .4464181795804519]
関数mean, var, medianも参照してください。
分位歪度係数です。以下のように定義されます。
               c    - 2 c    + c
                3/4      1/2    1/4
               --------------------
                   c    - c
                    3/4    1/4
ここでc_pは標本listのp分位数です。
例:
(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) quartile_skewness (s1), numer; (%o3) .04761904761904762
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quartile_skewness (s2);
(%o5) [- 0.0408542246982353, .1467025572005382, 
       0.0336239103362392, .03780068728522298, .2105263157894735]
関数quantileも参照してください。
多変量標本の共分散行列です。以下のように定義されます。
              n
             ====
          1  \           _        _
      S = -   >    (X  - X) (X  - X)'
          n  /       j        j
             ====
             j = 1
ここでX_jは標本行列のj番目の行です。
例:
(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$  /* change precision for pretty output */
(%i4) cov (s2);
      [ 17.22191  13.61811  14.37217  19.39624  15.42162 ]
      [                                                  ]
      [ 13.61811  14.98774  13.30448  15.15834  14.9711  ]
      [                                                  ]
(%o4) [ 14.37217  13.30448  15.47573  17.32544  16.18171 ]
      [                                                  ]
      [ 19.39624  15.15834  17.32544  32.17651  20.44685 ]
      [                                                  ]
      [ 15.42162  14.9711   16.18171  20.44685  24.42308 ]
関数cov1も参照してください。
多変量標本の共分散行列です。以下のように定義されます。
              n
             ====
         1   \           _        _
   S  = ---   >    (X  - X) (X  - X)'
    1   n-1  /       j        j
             ====
             j = 1
ここでX_jは標本行列のj番目の行です。
例:
(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov1 (s2);
      [ 17.39587  13.75567  14.51734  19.59216  15.5774  ]
      [                                                  ]
      [ 13.75567  15.13913  13.43887  15.31145  15.12232 ]
      [                                                  ]
(%o4) [ 14.51734  13.43887  15.63205  17.50044  16.34516 ]
      [                                                  ]
      [ 19.59216  15.31145  17.50044  32.50153  20.65338 ]
      [                                                  ]
      [ 15.5774   15.12232  16.34516  20.65338  24.66977 ]
関数covも参照してください。
関数global_variancesは大域分散尺度のリストを返します:
trace(S_1),
trace(S_1)/p,
determinant(S_1),
sqrt(determinant(S_1)),
determinant(S_1)^(1/p), (以下の文献で定義されています: Peña, D. (2002) Análisis de datos multivariantes; McGraw-Hill, Madrid.)
determinant(S_1)^(1/(2*p)).
ここでpは多変量確率変数の次元であり、
S_1はcov1が返す共分散行列です。
例:
(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) global_variances (s2);
(%o3) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608501, 6.636590811800795, 2.576158149609762]
関数global_variancesはオプションの論理引数を取ります:
global_variances(x,true)は、
Maximaにxがデータ行列であることを伝え、global_variances(x)と同様に作られます。
一方、global_variances(x,false)は
xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。
(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) s : cov1 (s2)$
(%i4) global_variances (s, false);
(%o4) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608501, 6.636590811800795, 2.576158149609762]
covとcov1も参照してください。
多変量標本の相関行列です。
例:
(%i1) load ("descriptive")$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) cor (s2);
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o4) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]
関数corはオプションの論理引数を取ります:
cor(x,true)は、
Maximaにxがデータ行列であることを伝え、cor(x)と同様に作られます。
一方、cor(x,false)は
xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。
(%i1) load ("descriptive")$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) s : cov1 (s2)$
(%i5) cor (s, false); /* this is faster */
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o5) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]
covとcov1も参照してください。
関数list_correlationsは相関尺度のリストを返します:
       -1     ij
      S   = (s  )             
       1         i,j = 1,2,...,p
       2          1
      R  = 1 - -------
       i        ii
               s   s
                    ii
変数の残りが独立変数として使われるとき これらはX_i上の線形多変量回帰モデルの適合度の指標です。
                         ij
                        s
      r        = - ------------
       ij.rest     / ii  jj\ 1/2
                   |s   s  |
                   \       /
例:
(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) z : list_correlations (s2)$
(%i4) fpprintprec : 5$ /* for pretty output */
(%i5) z[1];  /* precision matrix */
      [  .38486   - .13856   - .15626   - .10239    .031179  ]
      [                                                      ]
      [ - .13856   .34107    - .15233    .038447   - .052842 ]
      [                                                      ]
(%o5) [ - .15626  - .15233    .47296    - .024816  - .10054  ]
      [                                                      ]
      [ - .10239   .038447   - .024816   .10937    - .034033 ]
      [                                                      ]
      [ .031179   - .052842  - .10054   - .034033   .14834   ]
(%i6) z[2]; /* multiple correlation vector */ (%o6) [.85063, .80634, .86474, .71867, .72675]
(%i7) z[3];  /* partial correlation matrix */
      [  - 1.0     .38244   .36627   .49908   - .13049 ]
      [                                                ]
      [  .38244    - 1.0    .37927  - .19907   .23492  ]
      [                                                ]
(%o7) [  .36627    .37927   - 1.0    .10911    .37956  ]
      [                                                ]
      [  .49908   - .19907  .10911   - 1.0     .26719  ]
      [                                                ]
      [ - .13049   .23492   .37956   .26719    - 1.0   ]
関数list_correlationsもオプションの論理引数を取ります:
list_correlations(x,true)は、
Maximaにxがデータ行列であることを伝え、
list_correlations(x)と同様に作られます。
一方、list_correlations(x,false)は
xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。
covとcov1も参照してください。
Next: Functions and Variables for statistical graphs, Previous: Functions and Variables for data manipulation, Up: descriptive [Contents][Index]