solar azimuth angle derivations
- solar azimuth angle from latitude and solar declination/hour/zenith angles - symbol - description - unit - variable name - \(\theta_{0}\) - solar zenith angle - \(deg\) - solar_zenith_angle {time} - \(\delta\) - solar declination angle - \(deg\) - solar_declination_angle {time} - \(\phi\) - latitude - \(degN\) - latitude {time} - \(\varphi_{0}\) - solar azimuth angle - \(deg\) - solar_azimuth_angle {time} - \(\omega\) - solar hour angle - \(deg\) - solar_hour_angle {time} \begin{eqnarray} \varphi_{0} & = & \begin{cases} \sin(\frac{\pi}{180}\theta_{0}) = 0, & 0 \\ \sin(\frac{\pi}{180}\theta_{0}) \neq 0 \wedge \omega > 0, & -\frac{180}{\pi}\arccos(\frac{\sin(\frac{\pi}{180}\delta)\cos(\frac{\pi}{180}\phi) - \cos(\frac{\pi}{180}\omega)\cos(\frac{\pi}{180}\delta)\sin(\frac{\pi}{180}\phi)}{\sin(\frac{\pi}{180}\theta_{0})}) \\ \sin(\frac{\pi}{180}\theta_{0}) \neq 0 \wedge \omega <= 0, & \frac{180}{\pi}\arccos(\frac{\sin(\frac{\pi}{180}\delta)\cos(\frac{\pi}{180}\phi) - \cos(\frac{\pi}{180}\omega)\cos(\frac{\pi}{180}\delta)\sin(\frac{\pi}{180}\phi)}{\sin(\frac{\pi}{180}\theta_{0})}) \end{cases} \end{eqnarray}